Preferential attachment models and their generalizations

Liudmila Ostroumova, Andrei Raigorodskii

Yandex Lomonosov Moscow State University Moscow Institute of Physics and Technology

June, 2013

Experimental observations

Examples of large real-world networks:

- World-wide web
- Social networks
- Biological and chemical systems
- Neural networks

Experimental observations

Examples of large real-world networks:

- World-wide web
- Social networks
- Biological and chemical systems
- Neural networks

Typical properties:

- Sparse graphs (*n* vertices, *mn* edges)
- Small diameter
- Power law degree distribution

$$\frac{|\{v: \deg(v) = d\}|}{n} \approx \frac{c}{d^{\gamma}}, \quad 2 < \gamma < 3$$

• Constant clustering coefficient (many triangles)

Preferential attachment (Barabási and Albert, Bollobás and Riordan):

- Start with a small graph
- $\bullet\,$ At every step we add a new vertex with m edges
- The probability that a new vertex will be connected to a vertex i is proportional to the degree of i
- $\bullet\,$ Usually m edges are drawn independently or one by one
- After n steps we obtain a graph G_m^n

Theorem [Bollobás–Riordan–Spencer–Tusnády]

Let $m \ge 1$ and $\epsilon > 0$ be fixed, and put $\alpha_{m,d} = \frac{2m(m+1)}{d(d+1)(d+2)}$. Then whp we have

$$(1-\epsilon)\alpha_{m,d} \le \frac{\#_m^n(d)}{n} \le (1+\epsilon)\alpha_{m,d}$$

for every d in the range $m \leq d \leq n^{\frac{1}{15}}$

Theorem [Bollobás–Riordan–Spencer–Tusnády]

Let $m \ge 1$ and $\epsilon > 0$ be fixed, and put $\alpha_{m,d} = \frac{2m(m+1)}{d(d+1)(d+2)}$. Then whp we have

$$(1-\epsilon)\alpha_{m,d} \le \frac{\#_m^n(d)}{n} \le (1+\epsilon)\alpha_{m,d}$$

for every d in the range $m \leq d \leq n^{\frac{1}{15}}$

In particular, whp for all d in this range we have $\frac{\#_{a,m}^{n}(d)}{n} = \Theta\left(d^{-3}\right)$.

Theorem [Bollobás–Riordan–Spencer–Tusnády]

Let $m \ge 1$ and $\epsilon > 0$ be fixed, and put $\alpha_{m,d} = \frac{2m(m+1)}{d(d+1)(d+2)}$. Then whp we have

$$(1-\epsilon)\alpha_{m,d} \le \frac{\#_m^n(d)}{n} \le (1+\epsilon)\alpha_{m,d}$$

for every d in the range $m \leq d \leq n^{\frac{1}{15}}$

In particular, whp for all d in this range we have $\frac{\#_{a,m}^n(d)}{n} = \Theta\left(d^{-3}\right)$.

Theorem (Bollobás–Riordan)

Fix an integer $m\geq 2$ and a positive real number $\epsilon.$ Then whp G_m^n is connected and has diameter diam (G_m^n) satisfying

 $(1-\epsilon)\log n/\log\log n \leq \mathsf{diam}\,(G_m^n) \leq (1+\epsilon)\log n/\log\log n$

Algorithm 1: Preferential attachment

```
input : Number of vertices n, vertex out-degree m \ge 1
output: Graph G = (\{1, ..., n\}, E)
M: array of length 2mn
for v \leftarrow 0 to n-1 do
      for i \leftarrow 1 to m do
       \left| \begin{array}{c} M[2(mv+i)] \longleftarrow v \\ \mathsf{draw} \ r \in \{1, \dots, 2(mv+i)\} \text{ uniformly at random} \\ M[2(mv+i)-1] \longleftarrow M[r] \end{array} \right|
E \longleftarrow \emptyset
for i \leftarrow 1 to mn do
 E \leftarrow E \cup \{M[2i], M[2i-1]\}
```

Buckley–Osthus and Móri models

- Fix some positive constant *a* "initial attractiveness".
- Start with a graph with one vertex and m loops.
- At nth each step add one vertex and add m edges one by one.
- The probability to add an edge ni is proportional to indeg(i) + ma.

Buckley–Osthus and Móri models

- Fix some positive constant *a* "initial attractiveness".
- Start with a graph with one vertex and m loops.
- At nth each step add one vertex and add m edges one by one.
- The probability to add an edge ni is proportional to indeg(i) + ma.

Theorem (Buckley–Osthus) Let $m, a \ge 1$ be fixed integers then for all $0 \le d \le n^{1/100(a+1)}$ whp $\frac{\#_{a,m}^n(d)}{n} \sim C(a,m)d^{-2-a}.$

Buckley–Osthus and Móri models

- Fix some positive constant *a* "initial attractiveness".
- $\bullet\,$ Start with a graph with one vertex and m loops.
- At nth each step add one vertex and add m edges one by one.
- The probability to add an edge ni is proportional to indeg(i) + ma.

Theorem (Buckley–Osthus)

Let $m, a \geq 1$ be fixed integers then for all $0 \leq d \leq n^{1/100(a+1)}$ whp

$$\frac{\#_{a,m}^n(d)}{n} \sim C(a,m)d^{-2-a}.$$

Theorem (Grechnikov)

Let a > 0 be fixed real and $\psi(n) \to \infty$ when $n \to \infty$, then whp we have

$$\left| \#_{a,m}^{n}(d) - \frac{\mathcal{B}(d+ma,a+2)}{\mathcal{B}(ma,a+1)} n \right| \leq \left(\sqrt{d^{-a-2}n} + d^{-1} \right) \psi(n).$$

Global clustering coefficient of a graph G:

$$C_1(n) = \frac{3\#(\text{triangles in } G)}{\#(\text{pairs of adjacent edges in } G)}.$$

Global clustering coefficient of a graph G:

$$C_1(n) = \frac{3\#(\text{triangles in } G)}{\#(\text{pairs of adjacent edges in } G)}.$$

Average local clustering coefficient

- T^i is the number of edges between the neighbors of a vertex i
- P_2^i is the number of pairs of neighbors
- $C(i) = \frac{T^i}{P_2^i}$ is the local clustering coefficient for a vertex i
- $C_2(n) = \frac{1}{n} \sum_{i=1}^n C(i)$ average local clustering coefficient

Theorem (Bollobás)

Let $m \ge 1$ be fixed. The expected number of triangles in G_m^n is given by

$$(1+o(1))\frac{m(m-1)(m+1)}{48}(\log n)^3$$

as $n \to \infty$.

Theorem (Bollobás)

Let $m \geq 1$ be fixed. The expected number of triangles in G_m^n is given by

$$(1+o(1))\frac{m(m-1)(m+1)}{48}(\log n)^3$$

as $n \to \infty$.

Theorem (Bollobás)

Let $m\geq 1$ be fixed. The expected value of the global clustering coefficient is

$$\mathbb{E}C_1(G_m^n) \sim \frac{m-1}{8} \frac{(\log n)^2}{n}$$

as $n \to \infty$.

 $\ensuremath{\textbf{ldea:}}$ To mix preferential attachment steps with the steps of triangle formation.

 $\ensuremath{\textbf{ldea:}}$ To mix preferential attachment steps with the steps of triangle formation.

- Add a new vertex \boldsymbol{v} with \boldsymbol{m} edges
- Perform one PA step
- Then perform a triangle formation step with the probability P_t or a PA step with the probability $1-P_t$

Triangle formation: If an edge between v and u was added in the previous PA step, then add one more edge from v to a randomly chosen neighbor of u.

 $\ensuremath{\textbf{ldea:}}$ To mix preferential attachment steps with the steps of triangle formation.

- Add a new vertex \boldsymbol{v} with \boldsymbol{m} edges
- Perform one PA step
- Then perform a triangle formation step with the probability P_t or a PA step with the probability $1-P_t$

Triangle formation: If an edge between v and u was added in the previous PA step, then add one more edge from v to a randomly chosen neighbor of u.

Problems:

- $\bullet\,$ Parameter of the power-law degree distribution is $\gamma=3\,$
- Global clustering coefficient tends to zero.

Liudmila Ostroumova, Andrei Raigorodskii Preferential attachment models and their generalizations

• Put m = 2p

Liudmila Ostroumova, Andrei Raigorodskii Preferential attachment models and their generalizations

- Put m = 2p
- Fix $\alpha, \beta, \delta \ge 0$ and $\alpha + \beta + \delta = 1$

- Put m = 2p
- Fix $\alpha, \beta, \delta \ge 0$ and $\alpha + \beta + \delta = 1$
- Add a new vertex i with m edges. We add m edges in p steps

- Put m = 2p
- Fix $\alpha, \beta, \delta \geq 0$ and $\alpha + \beta + \delta = 1$
- $\bullet\,$ Add a new vertex i with m edges. We add m edges in p steps
- α probability of an indegree preferential step
 - β probability of an edge preferential step
 - δ probability of a random step

• Put m = 2p

- Fix $\alpha, \beta, \delta \ge 0$ and $\alpha + \beta + \delta = 1$
- $\bullet\,$ Add a new vertex i with m edges. We add m edges in p steps
- α probability of an indegree preferential step
 - β probability of an edge preferential step
 - δ probability of a random step

Edge preferential: choose a random edge, add two edges between its endpoints and *i*.

Polynomial model: properties

Degree distribution

Let $N_n(d)$ be the number of vertices with degree d. Then for $d < n^{\frac{2\alpha+\beta}{2(2\alpha+\beta+1)}}$ whp

$$N_n(d) \sim C(m, \alpha, \beta) d^{-1 - \frac{2}{2\alpha + \beta}} n.$$

Polynomial model: properties

Degree distribution

Let $N_n(d)$ be the number of vertices with degree d. Then for $d < n^{\frac{2\alpha+\beta}{2(2\alpha+\beta+1)}}$ whp

$$N_n(d) \sim C(m, \alpha, \beta) d^{-1 - \frac{2}{2\alpha + \beta}} n.$$

Average local clustering

If $\beta>0,$ then ${\bf whp}$

 $C_2(n) \ge C(m,\beta) > 0.$

Polynomial model: properties

Degree distribution

Let $N_n(d)$ be the number of vertices with degree d. Then for $d < n^{\frac{2\alpha+\beta}{2(2\alpha+\beta+1)}}$ whp

$$N_n(d) \sim C(m, \alpha, \beta) d^{-1 - \frac{2}{2\alpha + \beta}} n.$$

Average local clustering

If $\beta>0,$ then ${\bf whp}$

$$C_2(n) \ge C(m,\beta) > 0.$$

Global clustering

(1) If
$$2\alpha + \beta < 1$$
 then whp $C_1(n) \sim const$.

(2) If
$$2\alpha + \beta = 1$$
 then whp $C_1(n) \propto (\log n)^{-1}$.

(2) If
$$2\alpha + \beta > 1$$
 then whp $C_1(n) \propto n^{1-2\alpha-\beta}$

Polynomial model: generating

Algorithm 2: Polynomial model

```
input : Number of vertices n, out-degree m = 2p, \alpha, \beta, \delta \ge 0: \alpha + \beta + \delta = 1
output: Graph G = (\{1, ..., n\}, E)
for v \leftarrow 0 to n-1 do
     for i \leftarrow 1 to p do
          M[2(mv+2i-1)] \leftarrow v; M[2(mv+2i)] \leftarrow v
          switch the value of r \xleftarrow{sample}{delta U[0,1]} do
              case r < \alpha
                    draw r_1, r_2 \in \{1, \ldots, mv + 2i\} uniformly at random
                   M[2(mv+2i)-1] \leftarrow M[2r_1-1];
                   M[2(mv+2i)+1] \leftarrow M[2r_2-1]
              case r < \alpha + \beta
                   draw r_1 \in \{1, \ldots, mv + 2i\} uniformly at random
                   M[2(mv+2i)-1] \leftarrow M[2r_1];
                   M[2(mv+2i)+1] \leftarrow M[2r_1+1]
              otherwise
                   draw r_1, r_2 \in \{1, \ldots, v\} uniformly at random
                   M[2(mv+2i)-1] \leftarrow r_1; M[2(mv+2i)+1] \leftarrow r_2
for i \leftarrow 1 to mn do
 E \leftarrow E \cup \{M[2i], M[2i+1]\}
```

Recency property

Let E be the number of edges in a graph. Some edges connect nodes with age difference less than T. Denote the number of such edges by $E(T). \label{eq:edge}$

Recency property

Let E be the number of edges in a graph. Some edges connect nodes with age difference less than T. Denote the number of such edges by E(T).

We noticed that news-related part of the Web has so-called recency property.

At each step a new vertex with m edges is added. Neighbors of new vertex are chosen with probabilities proportional to their attractiveness.

At each step a new vertex with m edges is added. Neighbors of new vertex are chosen with probabilities proportional to their attractiveness. Attractiveness function:

$$f_{\tau}(d,q,a) = (1 \text{ or } q) \cdot (1 \text{ or } d) \cdot \left(1 \text{ or } e^{-\frac{a}{\tau}}\right) \,,$$

where q is quality of a vertex, d is degree of a vertex, and a is age of a vertex.

At each step a new vertex with m edges is added. Neighbors of new vertex are chosen with probabilities proportional to their attractiveness. Attractiveness function:

$$f_{\tau}(d,q,a) = (1 \text{ or } q) \cdot (1 \text{ or } d) \cdot \left(1 \text{ or } e^{-rac{a}{ au}}\right) \,,$$

where q is quality of a vertex, d is degree of a vertex, and a is age of a vertex.

- $f_{\tau}(d,q,a) = d$ leads to preferential attachment
- $f_{\tau}(d,q,a) = q \cdot d$ leads to fitness model

• If $f_{\tau} = d$ (preferential attachment), then $\#(d) \propto d^{-3}$

- If $f_{ au} = d$ (preferential attachment), then $\#(d) \propto d^{-3}$
- If $f_{\tau} = q e^{-\frac{a}{\tau}}$ and q is distributed according to the power law with parameter γ , then $\#(d) \sim d^{-\gamma}$

- If $f_{ au} = d$ (preferential attachment), then $\#(d) \propto d^{-3}$
- If $f_{\tau} = q e^{-\frac{a}{\tau}}$ and q is distributed according to the power law with parameter γ , then $\#(d) \sim d^{-\gamma}$
- If $f_\tau=d\,q\,e^{-\frac{a}{\tau}}$ and q is exponentially distributed with parameter $\mu,$ then $\#(d)\sim d^{-C(\tau)}$

- If $f_{ au} = d$ (preferential attachment), then $\#(d) \propto d^{-3}$
- If $f_\tau = q \, e^{-\frac{a}{\tau}}$ and q is distributed according to the power law with parameter γ , then $\#(d) \sim d^{-\gamma}$
- If $f_\tau=d\,q\,e^{-\frac{a}{\tau}}$ and q is exponentially distributed with parameter $\mu,$ then $\#(d)\sim d^{-C(\tau)}$

Recency property

 $E - E(T) \propto e^{\frac{-T}{\tau}}$

Recency sensitive models: generating

Function Sample(V, W)

input : array V[1...n], array W[1...n+1]// assume that W[1] = 0 and W[i+1] is the sum of weights of V[1],...,V[i] **output**: V[i] with probability proportional to W[i+1] - W[i] $\mathcal{E} \xleftarrow{\text{sample}} U[0,1]$: $x \leftarrow \xi \cdot W[n+1];$ // find V[r-1] where $r = \arg\min\{k : W[k] > x\}$ $l \leftarrow 1, r \leftarrow n+1$: while l < r do $mid = |\frac{l+r}{2}|;$ if W[mid] > x then r = mid;else $l = \mathsf{mid} + 1;$ return V[r]

Recency sensitive models: generating

Algorithm 3: Recency sensitive model

```
input : Number of vertices n, out-degree m, quality distribution \mathfrak{Q},
         attractiveness function f(d, q, a)
output: Graph G = (\{1, ..., n\}, E)
W[1] \leftarrow 0, i \leftarrow 1;
for new \leftarrow 1 to n do
    d[new] \longleftarrow m; q[new] \xleftarrow{sample}{\mathcal{D}} :
     for k \leftarrow 1 to m do
          old \leftarrow Sample(V, W);
         W[i+1] \leftarrow W[i] + f(d[old]+1, q[old], -old) - f(d[old], q[old], -old);
        V[i] \leftarrow old:
       E \leftarrow E \cup \{\mathsf{new}, \mathsf{old}\} :
      d[old] \leftarrow d[old] + 1;
      i \leftarrow i+1;
     W[i+1] \leftarrow W[i] + f(d[new], q[new], -new);
     V[i] \leftarrow \text{new};
     i \leftarrow i+1;
```