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Experimental observations

Examples of large real-world networks:
World-wide web
Social networks
Biological and chemical systems
Neural networks

Typical properties:
Sparse graphs (n vertices, mn edges)
Small diameter
Power law degree distribution

|{v : deg(v) = d}|
n

≈ c

dγ
, 2 < γ < 3

Constant clustering coefficient (many triangles)
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Preferential attachment: definition

Preferential attachment (Barabási and Albert, Bollobás and
Riordan):

Start with a small graph
At every step we add a new vertex with m edges
The probability that a new vertex will be connected to a vertex i is
proportional to the degree of i
Usually m edges are drawn independently or one by one
After n steps we obtain a graph Gnm
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Preferential attachment: properties

Theorem [Bollobás–Riordan–Spencer–Tusnády]

Let m ≥ 1 and ε > 0 be fixed, and put αm,d = 2m(m+1)
d(d+1)(d+2) . Then whp

we have
(1− ε)αm,d ≤

#n
m(d)

n
≤ (1 + ε)αm,d

for every d in the range m ≤ d ≤ n 1
15

In particular, whp for all d in this range we have #na,m(d)

n = Θ
(
d−3

)
.

Theorem (Bollobás–Riordan)

Fix an integer m ≥ 2 and a positive real number ε. Then whp Gnm is
connected and has diameter diam (Gnm) satisfying

(1− ε) log n/ log log n ≤ diam (Gnm) ≤ (1 + ε) log n/ log log n
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Preferential attachment: generating

Algorithm 1: Preferential attachment
input : Number of vertices n, vertex out-degree m ≥ 1
output: Graph G = ({1, . . . , n}, E)

M: array of length 2mn
for v ←− 0 to n− 1 do

for i←− 1 to m do
M [2(mv + i)]←− v
draw r ∈ {1, . . . , 2(mv + i)} uniformly at random
M [2(mv + i)− 1]←−M [r]

E ←− ∅
for i←− 1 to mn do

E ←− E ∪ {M [2i],M [2i− 1]}
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Buckley–Osthus and Móri models

Fix some positive constant a – "initial attractiveness".
Start with a graph with one vertex and m loops.
At nth each step add one vertex and add m edges one by one.
The probability to add an edge ni is proportional to indeg(i) +ma.

Theorem (Buckley–Osthus)

Let m, a ≥ 1 be fixed integers then for all 0 ≤ d ≤ n1/100(a+1) whp

#n
a,m(d)

n
∼ C(a,m)d−2−a.

Theorem (Grechnikov)

Let a > 0 be fixed real and ψ(n)→∞ when n→∞, then whp we have∣∣∣∣#n
a,m(d)− B(d+ma, a+ 2)

B(ma, a+ 1)
n

∣∣∣∣ ≤ (√d−a−2n+ d−1
)
ψ(n).
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Clustering coefficient

Global clustering coefficient of a graph G:

C1(n) =
3#(triangles in G)

#(pairs of adjacent edges in G)
.

Average local clustering coefficient
T i is the number of edges between the neighbors of a vertex i
P i2 is the number of pairs of neighbors

C(i) = T i

P i2
is the local clustering coefficient for a vertex i

C2(n) = 1
n

∑n
i=1 C(i) – average local clustering coefficient
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Triangles in PA models

Theorem (Bollobás)

Let m ≥ 1 be fixed. The expected number of triangles in Gnm is given by

(1 + o(1))
m(m− 1)(m+ 1)

48
(log n)3

as n→∞.

Theorem (Bollobás)

Let m ≥ 1 be fixed. The expected value of the global clustering
coefficient is

EC1(Gnm) ∼ m− 1

8

(log n)2

n
as n→∞.
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Holme–Kim model

Idea: To mix preferential attachment steps with the steps of triangle
formation.

Add a new vertex v with m edges
Perform one PA step
Then perform a triangle formation step with the probability Pt or a
PA step with the probability 1− Pt

Triangle formation: If an edge between v and u was added in the
previous PA step, then add one more edge from v to a randomly chosen
neighbor of u.
Problems:

Parameter of the power-law degree distribution is γ = 3

Global clustering coefficient tends to zero.
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Polynomial model: definition

Put m = 2p

Fix α, β, δ ≥ 0 and α+ β + δ = 1

Add a new vertex i with m edges. We add m edges in p steps
α – probability of an indegree preferential step
β – probability of an edge preferential step
δ – probability of a random step

Edge preferential: choose a random edge, add two edges between its
endpoints and i.
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Polynomial model: properties

Degree distribution

Let Nn(d) be the number of vertices with degree d. Then for
d < n

2α+β
2(2α+β+1) whp

Nn(d) ∼ C(m,α, β)d−1− 2
2α+β n.

Average local clustering

If β > 0, then whp
C2(n) ≥ C(m,β) > 0 .

Global clustering

(1) If 2α+ β < 1 then whp C1(n) ∼ const .
(2) If 2α+ β = 1 then whp C1(n) ∝ (log n)−1 .

(2) If 2α+ β > 1 then whp C1(n) ∝ n1−2α−β .
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Polynomial model: generating

Algorithm 2: Polynomial model
input : Number of vertices n, out-degree m = 2p, α, β, δ ≥ 0: α+ β + δ = 1
output: Graph G = ({1, . . . , n}, E)

for v ←− 0 to n− 1 do
for i←− 1 to p do

M [2(mv + 2i− 1)]←− v; M [2(mv + 2i)]←− v
switch the value of r

sample←−−−− U [0, 1] do
case r < α

draw r1, r2 ∈ {1, . . . ,mv + 2i} uniformly at random
M [2(mv + 2i)− 1]←−M [2r1 − 1];
M [2(mv + 2i) + 1]←−M [2r2 − 1]

case r < α+ β
draw r1 ∈ {1, . . . ,mv + 2i} uniformly at random
M [2(mv + 2i)− 1]←−M [2r1];
M [2(mv + 2i) + 1]←−M [2r1 + 1]

otherwise
draw r1, r2 ∈ {1, . . . , v} uniformly at random
M [2(mv + 2i)− 1]←− r1; M [2(mv + 2i) + 1]←− r2

for i←− 1 to mn do
E ←− E ∪ {M [2i],M [2i+ 1]}
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Recency property

Let E be the number of edges in a graph. Some edges connect nodes
with age difference less than T . Denote the number of such edges by
E(T ).

We noticed that news-related part of the Web has so-called recency
property.

 0⋅100

 5⋅108

 1⋅109

1 month 2 months 3 month

E(
T)

T
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Recency sensitive models

At each step a new vertex with m edges is added. Neighbors of new
vertex are chosen with probabilities proportional to their attractiveness.

Attractiveness function:

fτ (d, q, a) = (1 or q) · (1 or d) ·
(
1 or e−

a
τ

)
,

where q is quality of a vertex, d is degree of a vertex, and a is age of a
vertex.

fτ (d, q, a) = d leads to preferential attachment
fτ (d, q, a) = q · d leads to fitness model
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Recency sensitive models: properties

Degree distribution:
If fτ = d (preferential attachment), then #(d) ∝ d−3

If fτ = q e−
a
τ and q is distributed according to the power law with

parameter γ, then #(d) ∼ d−γ

If fτ = d q e−
a
τ and q is exponentially distributed with parameter µ,

then #(d) ∼ d−C(τ)

Recency property

E − E(T ) ∝ e−T
τ
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Recency sensitive models: generating

Function Sample(V, W)
input : array V[1. . . n], array W[1. . . n+1]
// assume that W[1] = 0 and W[i+1] is the sum of weights

of V[1 ],. . .,V[i ]
output: V[i ] with probability proportional to W[i+1 ] - W[i ]

ξ
sample←−−−− U [0, 1];

x←− ξ ·W[n+1];

// find V[r-1] where r = arg min {k : W[k] > x}
l←− 1, r ←− n+ 1 ;
while l < r do

mid = b l+r2 c ;
if W[mid ] > x then

r = mid ;

else
l = mid + 1 ;

return V[r ]
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Recency sensitive models: generating

Algorithm 3: Recency sensitive model
input : Number of vertices n, out-degree m, quality distribution Q,

attractiveness function f(d, q, a)
output: Graph G = ({1, . . . , n}, E)

W[1]←− 0, i←− 1 ;
for new←− 1 to n do

d[new]←− m; q[new] sample←−−−− Q ;
for k ←− 1 to m do

old ←− Sample(V, W ) ;
W[i+1]←−W[i]+ f(d[old]+1, q[old], -old)− f(d[old], q[old], -old) ;
V[i]←− old ;
E ←− E ∪ {new, old} ;
d[old]←− d[old] + 1 ;
i←− i+ 1 ;

W[i+1]←−W[i] + f(d[new], q[new], -new) ;
V[i]←− new ;
i←− i+ 1 ;
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